Wheel Health Monitoring Using Onboard Sensors

Brad M. Hopkins, Ph.D.

Project Engineer – Condition Monitoring

Amsted Rail Company, Inc.

Agenda

- 1. Motivation
- 2. Overview of Methodology
- 3. Application: Wheel Flat Detection
- 4. Application: Wheel Wear Estimation

Agenda

- 1. Motivation
- 2. Overview of Methodology
- 3. Application: Wheel Flat Detection
- 4. Application: Wheel Wear Estimation

Motivation

- Wheel flat spots damage track
- Worn wheels affect truck performance and truck wear
- ~150 Wheel Impact Load Detectors in North America (irregular sampling intervals)
- Onboard monitoring provides a solution for monitoring every day, or several times per day

Agenda

- Motivation
- 2. Overview of Methodology
- 3. Application: Wheel Flat Detection
- 4. Application: Wheel Wear Estimation

Methodology

Process Data

Onboard Data Collection

Sensor Selection

- Low cost
- Low power
- Specs: range, bandwidth, sampling rate, resolution, etc.

Sensor Placement @

- High sensitivity to vibrations of interest
- Low sensitivity to vibrations that can corrupt signal

Onboard Data Collection

WRI 2016

WRI 2016

Data Processing

Machine Learning

What is Machine Learning?

- 1. Find <u>features of interest</u>
 that contain information
 related to the class or
 state
- 2. Classify the features using a set of rules and/or optimization routines

The Wide Field of Machine Learning

Example: Image Recognition

Salmon or tuna?

Example: Image Recognition

Features:

- 1. Length (# pixels)
- 2. Color (pixel intensity)

Example: Image RecognitionTrain Classifier:

Example: Image Recognition Deploy Classifier:

What the data might actually look like in the real world....

WRI 2016

Overfitting the data is a problem!

We could linearly separate, and report confidence/ error band:

Or we could transform the features to a new space:

Or we could find new features that work better:

Agenda

- 1. Motivation
- 2. Overview of Methodology
- 3. Application: Wheel Flat Detection
- 4. Application: Wheel Wear Estimation

Accelerometer mounted to bearing adapter:

What we hope the data will look like:

36 inch wheel would generate a pulse 6.5 times per second traveling at 42 mph

What the data really looks like:

Here is what it looks like in the frequency domain:

Here is what it looks like in the frequency domain:

WRI 2016

Original time domain signal:

Filtered around carrier frequency

Envelope signal

Frequency domain of envelope signal

Frequency domain of envelope signal

Agenda

- 1. Motivation
- 2. Overview of Methodology
- 3. Application: Wheel Flat Detection
- 4. Application: Wheel Wear Estimation

Goal:
determine
level of wheel
wear using
onboard
accelerometers

The relevant information is encoded in various time domain, frequency domain, and statistical features

Feature #	Feature Description			
1	Band Power (1) 0-5 Hz			
2	Band Power (2) 7-12 Hz			
3	Band Power (3) 25-50 Hz			
4	Magnitude at Fund. Frequency			
5	Fundamental Frequency			
6	Mean			
7	Variance			
8	8 Standard Deviation			
9	Peak to Peak			

The features are fed into a support vector machine (SVM) to classify

An SVM seeks to maximize the distance between two classes

Results at 50 mph:

Average Classification Accuracy of 79%

Sample Simulation	Predicted Class				
		No Wear	Med. Wear	Fully worn	
Actual Class	No Wear	30	0	0	
	Med. Wear	0	28	7	
	Full Wear	0	14	21	

Results at 65 mph:

Average Classification Accuracy of 92%

Classification accuracy using peak to peak and standard deviation: 55%

Sample Simulation	Predicted Class				
		No Wear	Med. Wear	Fully worn	
Actual Class	No Wear	29	0	1	
	Med. Wear	0	31	4	
	Full Wear	1	1	33	

Conclusions

- Sensor selection, placement, and data acquisition are not trivial
- Finding the features of interest requires expertise
- Machine learning provides a powerful way to classify features for health monitoring

Questions?